1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
| import pandas as pd import numpy as np import os,re,random,csv,shutil from datetime import date,time,timedelta from pyecharts.charts import Kline, Line, Bar, Grid,Map,Pie,Timeline,Geo from pyecharts.commons.utils import JsCode from pyecharts import options as opts from pyecharts.globals import CurrentConfig, NotebookType,ThemeType,ChartType, SymbolType from pytdx.reader import TdxDailyBarReader, TdxFileNotFoundException import baostock as bs from chinese_calendar import is_workday, is_holiday
reader = TdxDailyBarReader()
def getfullcode(code): if code.startswith('6',0,1): code = 'sh' + code elif code.startswith('0',0,1) or code.startswith('3',0,1): code = 'sz' + code return code
def get_filepath(code): """ 根据6位数字的股票代码获取完整的日k线数据路径 """ code = getfullcode(code) fd1 = r'D:\new_tdx\vipdoc' fd2 = f"{re.match(r'[a-z]+',code).group()}\lday\{code}.day" return os.path.join(fd1,fd2)
def get_nameidu(code): """ 根据股票代码获取对应的股票名称和所属行业 返回list [name,idu] code: '600000' str格式 """ dn = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str}) dn['代码'] = dn['代码'].map(lambda x: x.rjust(6,'0')) names = dict(zip(dn['代码'].tolist(),dn['名称'].tolist())) idus = dict(zip(dn['代码'].tolist(),dn['细分行业'].tolist())) return [names.get(code),idus.get(code)]
def add_ma(data): '''添加列数据,均线数据''' data['ma5'] = data['close'].rolling(5).mean() data['ma10'] = data['close'].rolling(10).mean() data['ma20'] = data['close'].rolling(20).mean() data['ma30'] = data['close'].rolling(30).mean() data['ma60'] = data['close'].rolling(60).mean() data['ma90'] = data['close'].rolling(90).mean() data['ma120'] = data['close'].rolling(120).mean() data['ma250'] = data['close'].rolling(250).mean() data.dropna(inplace=True) data = data.applymap(lambda x: round(x,2) if isinstance(x,float) else x) return data
def get_tdxklinedata(code): """ 根据股票代码,读取行情数据。为DF添加均线数据列,并对数值取小数点2位数。 """ df = reader.get_df(get_filepath(getfullcode(code))) return add_ma(df)
def pelevel(arr): """ 计算arr中最后一个数在数组的分位点 返回: value ---float 参数: arr: numpy的一维数组 """ target = arr[-1] level = 1 - np.count_nonzero(target <= arr) / arr.size return level
def get_pestartdate(): x= 1050 dates = pd.date_range(end=date.today(),periods=x,freq='B') tradedates = [i for i in dates if is_workday(i)] while len(tradedates)<1000: x+=1 dates = pd.date_range(end=date.today(),periods=x,freq='B') tradedates = [i for i in dates if is_workday(i)] return [f"{tradedates[0]:%Y-%d-%d}",f"{tradedates[-1]:%Y-%m-%d}"]
pedates = get_pestartdate() selfdate = pedates[0] idudate = pedates[1]
def get_selfpes(code): bs.login() if code.startswith('6'): code = 'sh.' + code else: code = 'sz.' + code data = bs.query_history_k_data_plus( code=code, fields="date,code,turn,peTTM", frequency="d", start_date= selfdate, adjustflag="2").get_data() bs.logout() truns = [round(float(i),2) for i in data['turn'].tolist()[-5:]] pes = [f"{float(i):.2f}" for i in data['peTTM'].tolist() if i!=''] return [truns,pes]
def get_iduavgpe(code): bs.login() idu = get_nameidu(code)[1] df_idu = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str}) codes = df_idu.query('细分行业 == @idu')['代码'].tolist() dfpes = pd.DataFrame() for code in codes: if code.startswith('6'): code = 'sh.' + code else: code = 'sz.' + code data = bs.query_history_k_data_plus( code=code, fields="date,code,peTTM", frequency="d", start_date= idudate, adjustflag="2").get_data() dfpes = pd.concat([dfpes,data]) dfpes['peTTM'] = dfpes['peTTM'].astype(float) bs.logout() return dfpes['peTTM'].mean(skipna = True)
def kline(code): """ 绘制K线图 参数: df (DataFrame) df 必须包含 columns:['open','close','high','low','amount','date'] 返回: K线图html 参数: code: 股票代码 '60000' """ df = add_ma(get_tdxklinedata(code)) x_data = list(map(lambda x: x.strftime("%Y-%m-%d"), df.index.tolist())) y_data = df[["open", "close", "low","high"]].values.tolist() name = get_nameidu(code)[0] idu = get_nameidu(code)[1] trunpes = get_selfpes(code) pe = trunpes[1][-1] pes = np.array(trunpes[1]) turns = trunpes[0] pes_250 = pes[-250:] pes_500 = pes[-500:] pes_750 = pes[-750:] pes_1000 = pes[-1000:] level1 = f"{pelevel(pes_250):.3f}" level2 = f"{pelevel(pes_500):.3f}" level3 = f"{pelevel(pes_750):.3f}" level4 = f"{pelevel(pes_1000):.3f}" idupeavg = get_iduavgpe(code) k = (Kline(init_opts=opts.InitOpts(width="100%", height="1200px")) .add_xaxis(x_data) .add_yaxis("kline",y_data).set_global_opts( datazoom_opts=[ opts.DataZoomOpts(type_="inside", range_start=95, range_end=100), opts.DataZoomOpts(type_="slider", xaxis_index=[0,1], range_start=int(100 - 150/len(df)*100), range_end=100, is_show=True), ], title_opts=opts.TitleOpts( subtitle=f"代码: {code} 名称: {name} 行业: {idu} \n\n当前pe: {pe} 行业pe: {idupeavg:.2f}\n\n近5天换手率: {turns}\n\npe分位点:\n\n {level1} / 250 days\n\n {level2} / 500 days\n\n {level3} / 750 days\n\n {level4} / 1000 days ", pos_top = '1%', pos_right ="10%", ), ) ) l =(Line(init_opts=opts.InitOpts(width="100%", height="1200px")).add_xaxis(x_data) .add_yaxis("ma5", df['ma5'].values.tolist(), symbol = None, is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts(data=[ {"yAxis": 150}, opts.MarkPointItem(type_="min"), opts.MarkPointItem(type_="max"), opts.MarkPointItem(type_="average")]) ) .add_yaxis("ma10", df['ma10'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis("ma20", df['ma20'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis("ma30", df['ma30'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis("ma60", df['ma60'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis("ma120", df['ma120'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis("ma250", df['ma250'].values.tolist(), is_symbol_show=False, label_opts=opts.LabelOpts(is_show=False), ) )
v = (Bar() .add_xaxis(xaxis_data=date).add_yaxis( series_name="成交额", y_axis=df["amount"].tolist(), xaxis_index=1, yaxis_index=1, label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(""" function(params) { var colorList; if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) { colorList = '#ef232a'; } else { colorList = '#14b143'; } return colorList; } """)), ) .set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", grid_index=1, axislabel_opts=opts.LabelOpts(is_show=False), ), legend_opts=opts.LegendOpts(is_show=False), ))
ov1 = k.overlap(l) ov1.render_notebook() ov1.render('3.html') ov = k.overlap(l) g = (Grid(init_opts=opts.InitOpts( width="100%", height="800px", animation_opts=opts.AnimationOpts(animation=False), ) ) .add_js_funcs("var barData={}".format(df[["open", "close"]].values.tolist())) .add(ov, grid_opts=opts.GridOpts( pos_top="2%", height="70%", ), ) .add(v, grid_opts=opts.GridOpts( pos_top="76%", height="19%", ),) ) outph = f'C:\\Users\\xiaoyx\\Desktop\\{date.today():%y%m%d}' filename = f"{code}.html" outfile = os.path.join(outph,filename) if os.path.exists(outph): pass else: os.makedirs(outph) return g.render(outfile)
if __name__ == '__main__': kline('000409')
|