kline定制K线图实例(读取TDX软件数据)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import pandas as pd
import numpy as np
import os,re,random,csv,shutil
from datetime import date,time,timedelta
from pyecharts.charts import Kline, Line, Bar, Grid,Map,Pie,Timeline,Geo
from pyecharts.commons.utils import JsCode
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, NotebookType,ThemeType,ChartType, SymbolType
from pytdx.reader import TdxDailyBarReader, TdxFileNotFoundException
import baostock as bs
from chinese_calendar import is_workday, is_holiday

reader = TdxDailyBarReader()

def getfullcode(code):
if code.startswith('6',0,1):
code = 'sh' + code
elif code.startswith('0',0,1) or code.startswith('3',0,1):
code = 'sz' + code
return code


def get_filepath(code):
"""
根据6位数字的股票代码获取完整的日k线数据路径
"""
code = getfullcode(code)
fd1 = r'D:\new_tdx\vipdoc'
fd2 = f"{re.match(r'[a-z]+',code).group()}\lday\{code}.day"
return os.path.join(fd1,fd2)

def get_nameidu(code):
"""
根据股票代码获取对应的股票名称和所属行业
返回list [name,idu]
code: '600000' str格式
"""
dn = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str})
dn['代码'] = dn['代码'].map(lambda x: x.rjust(6,'0'))
names = dict(zip(dn['代码'].tolist(),dn['名称'].tolist()))
idus = dict(zip(dn['代码'].tolist(),dn['细分行业'].tolist()))
return [names.get(code),idus.get(code)]

def add_ma(data):
'''添加列数据,均线数据'''
data['ma5'] = data['close'].rolling(5).mean()
data['ma10'] = data['close'].rolling(10).mean()
data['ma20'] = data['close'].rolling(20).mean()
data['ma30'] = data['close'].rolling(30).mean()
data['ma60'] = data['close'].rolling(60).mean()
data['ma90'] = data['close'].rolling(90).mean()
data['ma120'] = data['close'].rolling(120).mean()
data['ma250'] = data['close'].rolling(250).mean()
data.dropna(inplace=True)
data = data.applymap(lambda x: round(x,2) if isinstance(x,float) else x)
return data


def get_tdxklinedata(code):
"""
根据股票代码,读取行情数据。为DF添加均线数据列,并对数值取小数点2位数。
"""
df = reader.get_df(get_filepath(getfullcode(code)))
return add_ma(df)


def pelevel(arr):
"""
计算arr中最后一个数在数组的分位点
返回: value ---float
参数:
arr: numpy的一维数组
"""
target = arr[-1]
level = 1 - np.count_nonzero(target <= arr) / arr.size
return level

def get_pestartdate():
x= 1050
dates = pd.date_range(end=date.today(),periods=x,freq='B')
tradedates = [i for i in dates if is_workday(i)]
while len(tradedates)<1000:
x+=1
dates = pd.date_range(end=date.today(),periods=x,freq='B')
tradedates = [i for i in dates if is_workday(i)]
return [f"{tradedates[0]:%Y-%d-%d}",f"{tradedates[-1]:%Y-%m-%d}"]

pedates = get_pestartdate()
selfdate = pedates[0]
idudate = pedates[1]

def get_selfpes(code):
bs.login()
if code.startswith('6'):
code = 'sh.' + code
else:
code = 'sz.' + code
data = bs.query_history_k_data_plus(
code=code,
fields="date,code,turn,peTTM",
frequency="d",
start_date= selfdate,
adjustflag="2").get_data()
bs.logout()
truns = [round(float(i),2) for i in data['turn'].tolist()[-5:]]
pes = [f"{float(i):.2f}" for i in data['peTTM'].tolist() if i!='']
return [truns,pes]

def get_iduavgpe(code):
bs.login()
# 根据代码获得所属细分行业
idu = get_nameidu(code)[1]
# 列出该股票所属行业的全部股票代码
df_idu = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str})
codes = df_idu.query('细分行业 == @idu')['代码'].tolist()
dfpes = pd.DataFrame()
for code in codes:
if code.startswith('6'):
code = 'sh.' + code
else:
code = 'sz.' + code
data = bs.query_history_k_data_plus(
code=code,
fields="date,code,peTTM",
frequency="d",
start_date= idudate,
adjustflag="2").get_data()
dfpes = pd.concat([dfpes,data])
dfpes['peTTM'] = dfpes['peTTM'].astype(float)
bs.logout()
return dfpes['peTTM'].mean(skipna = True)


def kline(code):
"""
绘制K线图
参数: df (DataFrame)
df 必须包含 columns:['open','close','high','low','amount','date']
返回: K线图html
参数:
code: 股票代码 '60000'
"""
# df = get_tdxklinedata(code)
df = add_ma(get_tdxklinedata(code))
# K线图 x 轴数据
x_data = list(map(lambda x: x.strftime("%Y-%m-%d"), df.index.tolist()))
# k线图 y 轴数据
y_data = df[["open", "close", "low","high"]].values.tolist()
# 根据股票代码获取对应的名称和行业
name = get_nameidu(code)[0]
idu = get_nameidu(code)[1]
# 从baostock下载 pe 和 trun
trunpes = get_selfpes(code)
pe = trunpes[1][-1]
pes = np.array(trunpes[1])
# peTTM = df['peTTM'].tolist()[-1]
# 获取最近5日的换手率数据
turns = trunpes[0]
# 从k线数据表获取股票250日、500日、以及全部值并计算当前值所处的分位点
pes_250 = pes[-250:]
pes_500 = pes[-500:]
pes_750 = pes[-750:]
pes_1000 = pes[-1000:]
level1 = f"{pelevel(pes_250):.3f}"
level2 = f"{pelevel(pes_500):.3f}"
level3 = f"{pelevel(pes_750):.3f}"
level4 = f"{pelevel(pes_1000):.3f}"
# 获取股票所属行业的所有股票的pe,并计算行业pe均值
idupeavg = get_iduavgpe(code)
#-------------设置kline-------------------
k = (Kline(init_opts=opts.InitOpts(width="100%", height="1200px"))
.add_xaxis(x_data)
.add_yaxis("kline",y_data).set_global_opts(
datazoom_opts=[
opts.DataZoomOpts(type_="inside",
range_start=95,
range_end=100),
opts.DataZoomOpts(type_="slider",
xaxis_index=[0,1],
range_start=int(100 - 150/len(df)*100),
range_end=100,
is_show=True),
],
title_opts=opts.TitleOpts(
# title="K线图",
subtitle=f"代码: {code} 名称: {name} 行业: {idu} \n\n当前pe: {pe} 行业pe: {idupeavg:.2f}\n\n近5天换手率: {turns}\n\npe分位点:\n\n {level1} / 250 days\n\n {level2} / 500 days\n\n {level3} / 750 days\n\n {level4} / 1000 days ",
pos_top = '1%',
pos_right ="10%",
),
# toolbox_opts=opts.ToolboxOpts(),

)
)
# -----------------均线 折线图---------------
l =(Line(init_opts=opts.InitOpts(width="100%", height="1200px")).add_xaxis(x_data)
.add_yaxis("ma5",
df['ma5'].values.tolist(),
symbol = None,
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
markpoint_opts=opts.MarkPointOpts(data=[
{"yAxis": 150}, # 增加自定义标记线
opts.MarkPointItem(type_="min"),
opts.MarkPointItem(type_="max"),
opts.MarkPointItem(type_="average")])
)
.add_yaxis("ma10",
df['ma10'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis("ma20",
df['ma20'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis("ma30",
df['ma30'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis("ma60",
df['ma60'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
# .add_yaxis("ma90",
# df['ma90'].values.tolist(),
# is_symbol_show=False,
# label_opts=opts.LabelOpts(is_show=False),
# )
.add_yaxis("ma120",
df['ma120'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis("ma250",
df['ma250'].values.tolist(),
is_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
)

v = (Bar()
.add_xaxis(xaxis_data=date).add_yaxis(
series_name="成交额",
y_axis=df["amount"].tolist(),
xaxis_index=1,
yaxis_index=1,
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=opts.ItemStyleOpts(color=JsCode("""
function(params) {
var colorList;
if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
colorList = '#ef232a';
} else {
colorList = '#14b143';
}
return colorList;
}
""")),
)
.set_global_opts(
xaxis_opts=opts.AxisOpts(
type_="category",
grid_index=1,
axislabel_opts=opts.LabelOpts(is_show=False),
),
legend_opts=opts.LegendOpts(is_show=False),
))

# ---------------------叠加图表----------------------
ov1 = k.overlap(l)
ov1.render_notebook()
ov1.render('3.html')
# --------------------组合图表---------------------------
ov = k.overlap(l)
g = (Grid(init_opts=opts.InitOpts(
width="100%",
height="800px",
animation_opts=opts.AnimationOpts(animation=False),
)
)
.add_js_funcs("var barData={}".format(df[["open", "close"]].values.tolist()))
.add(ov,
grid_opts=opts.GridOpts(
pos_top="2%",
height="70%",
),
)
.add(v,
grid_opts=opts.GridOpts(
pos_top="76%",
height="19%",
),)
)
outph = f'C:\\Users\\xiaoyx\\Desktop\\{date.today():%y%m%d}'
filename = f"{code}.html"
outfile = os.path.join(outph,filename)
if os.path.exists(outph):
pass
else:
os.makedirs(outph)
return g.render(outfile)
# return g.render_notebook()


if __name__ == '__main__':
kline('000409')

Awesome-pyecharts