| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 
 | import pandas as pdimport numpy as np
 import os,re,random,csv,shutil
 from datetime import date,time,timedelta
 from pyecharts.charts import Kline, Line, Bar, Grid,Map,Pie,Timeline,Geo
 from pyecharts.commons.utils import JsCode
 from pyecharts import options as opts
 from pyecharts.globals import CurrentConfig, NotebookType,ThemeType,ChartType, SymbolType
 from pytdx.reader import TdxDailyBarReader, TdxFileNotFoundException
 import baostock as bs
 from chinese_calendar import is_workday, is_holiday
 
 reader = TdxDailyBarReader()
 
 def getfullcode(code):
 if code.startswith('6',0,1):
 code = 'sh' + code
 elif code.startswith('0',0,1) or code.startswith('3',0,1):
 code = 'sz' + code
 return code
 
 
 def get_filepath(code):
 """
 根据6位数字的股票代码获取完整的日k线数据路径
 """
 code = getfullcode(code)
 fd1 = r'D:\new_tdx\vipdoc'
 fd2 = f"{re.match(r'[a-z]+',code).group()}\lday\{code}.day"
 return os.path.join(fd1,fd2)
 
 def get_nameidu(code):
 """
 根据股票代码获取对应的股票名称和所属行业
 返回list [name,idu]
 code: '600000' str格式
 """
 dn = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str})
 dn['代码'] = dn['代码'].map(lambda x: x.rjust(6,'0'))
 names = dict(zip(dn['代码'].tolist(),dn['名称'].tolist()))
 idus  = dict(zip(dn['代码'].tolist(),dn['细分行业'].tolist()))
 return [names.get(code),idus.get(code)]
 
 def add_ma(data):
 '''添加列数据,均线数据'''
 data['ma5'] = data['close'].rolling(5).mean()
 data['ma10'] = data['close'].rolling(10).mean()
 data['ma20'] = data['close'].rolling(20).mean()
 data['ma30'] = data['close'].rolling(30).mean()
 data['ma60'] = data['close'].rolling(60).mean()
 data['ma90'] = data['close'].rolling(90).mean()
 data['ma120'] = data['close'].rolling(120).mean()
 data['ma250'] = data['close'].rolling(250).mean()
 data.dropna(inplace=True)
 data = data.applymap(lambda x: round(x,2) if isinstance(x,float) else x)
 return data
 
 
 def get_tdxklinedata(code):
 """
 根据股票代码,读取行情数据。为DF添加均线数据列,并对数值取小数点2位数。
 """
 df =  reader.get_df(get_filepath(getfullcode(code)))
 return add_ma(df)
 
 
 def pelevel(arr):
 """
 计算arr中最后一个数在数组的分位点
 返回: value ---float
 参数:
 arr: numpy的一维数组
 """
 target = arr[-1]
 level = 1 - np.count_nonzero(target <= arr) / arr.size
 return level
 
 def get_pestartdate():
 x= 1050
 dates = pd.date_range(end=date.today(),periods=x,freq='B')
 tradedates = [i for i in dates if is_workday(i)]
 while len(tradedates)<1000:
 x+=1
 dates = pd.date_range(end=date.today(),periods=x,freq='B')
 tradedates = [i for i in dates if is_workday(i)]
 return [f"{tradedates[0]:%Y-%d-%d}",f"{tradedates[-1]:%Y-%m-%d}"]
 
 pedates = get_pestartdate()
 selfdate = pedates[0]
 idudate = pedates[1]
 
 def get_selfpes(code):
 bs.login()
 if code.startswith('6'):
 code = 'sh.' + code
 else:
 code = 'sz.' + code
 data = bs.query_history_k_data_plus(
 code=code,
 fields="date,code,turn,peTTM",
 frequency="d",
 start_date= selfdate,
 adjustflag="2").get_data()
 bs.logout()
 truns = [round(float(i),2) for i in data['turn'].tolist()[-5:]]
 pes = [f"{float(i):.2f}" for i in data['peTTM'].tolist() if i!='']
 return [truns,pes]
 
 def get_iduavgpe(code):
 bs.login()
 
 idu = get_nameidu(code)[1]
 
 df_idu = pd.read_csv(r"D:\stock_data\allstock.csv",dtype={'代码':str})
 codes = df_idu.query('细分行业 == @idu')['代码'].tolist()
 dfpes = pd.DataFrame()
 for code in codes:
 if code.startswith('6'):
 code = 'sh.' + code
 else:
 code = 'sz.' + code
 data = bs.query_history_k_data_plus(
 code=code,
 fields="date,code,peTTM",
 frequency="d",
 start_date= idudate,
 adjustflag="2").get_data()
 dfpes = pd.concat([dfpes,data])
 dfpes['peTTM'] = dfpes['peTTM'].astype(float)
 bs.logout()
 return dfpes['peTTM'].mean(skipna = True)
 
 
 def kline(code):
 """
 绘制K线图
 参数: df (DataFrame)
 df 必须包含 columns:['open','close','high','low','amount','date']
 返回: K线图html
 参数:
 code: 股票代码 '60000'
 """
 
 df = add_ma(get_tdxklinedata(code))
 
 x_data = list(map(lambda x: x.strftime("%Y-%m-%d"), df.index.tolist()))
 
 y_data = df[["open", "close", "low","high"]].values.tolist()
 
 name = get_nameidu(code)[0]
 idu = get_nameidu(code)[1]
 
 trunpes = get_selfpes(code)
 pe = trunpes[1][-1]
 pes = np.array(trunpes[1])
 
 
 turns = trunpes[0]
 
 pes_250 = pes[-250:]
 pes_500 = pes[-500:]
 pes_750 = pes[-750:]
 pes_1000 = pes[-1000:]
 level1 = f"{pelevel(pes_250):.3f}"
 level2 = f"{pelevel(pes_500):.3f}"
 level3 = f"{pelevel(pes_750):.3f}"
 level4 = f"{pelevel(pes_1000):.3f}"
 
 idupeavg = get_iduavgpe(code)
 
 k = (Kline(init_opts=opts.InitOpts(width="100%", height="1200px"))
 .add_xaxis(x_data)
 .add_yaxis("kline",y_data).set_global_opts(
 datazoom_opts=[
 opts.DataZoomOpts(type_="inside",
 range_start=95,
 range_end=100),
 opts.DataZoomOpts(type_="slider",
 xaxis_index=[0,1],
 range_start=int(100 - 150/len(df)*100),
 range_end=100,
 is_show=True),
 ],
 title_opts=opts.TitleOpts(
 
 subtitle=f"代码:    {code}      名称:   {name}      行业:   {idu} \n\n当前pe:   {pe}     行业pe:     {idupeavg:.2f}\n\n近5天换手率: {turns}\n\npe分位点:\n\n         {level1} / 250 days\n\n         {level2} / 500 days\n\n         {level3} / 750 days\n\n         {level4} / 1000 days ",
 pos_top = '1%',
 pos_right ="10%",
 ),
 
 
 )
 )
 
 l =(Line(init_opts=opts.InitOpts(width="100%", height="1200px")).add_xaxis(x_data)
 .add_yaxis("ma5",
 df['ma5'].values.tolist(),
 symbol = None,
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 markpoint_opts=opts.MarkPointOpts(data=[
 {"yAxis": 150},
 opts.MarkPointItem(type_="min"),
 opts.MarkPointItem(type_="max"),
 opts.MarkPointItem(type_="average")])
 )
 .add_yaxis("ma10",
 df['ma10'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 .add_yaxis("ma20",
 df['ma20'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 .add_yaxis("ma30",
 df['ma30'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 .add_yaxis("ma60",
 df['ma60'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 
 
 
 
 
 .add_yaxis("ma120",
 df['ma120'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 .add_yaxis("ma250",
 df['ma250'].values.tolist(),
 is_symbol_show=False,
 label_opts=opts.LabelOpts(is_show=False),
 )
 )
 
 v =  (Bar()
 .add_xaxis(xaxis_data=date).add_yaxis(
 series_name="成交额",
 y_axis=df["amount"].tolist(),
 xaxis_index=1,
 yaxis_index=1,
 label_opts=opts.LabelOpts(is_show=False),
 itemstyle_opts=opts.ItemStyleOpts(color=JsCode("""
 function(params) {
 var colorList;
 if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
 colorList = '#ef232a';
 } else {
 colorList = '#14b143';
 }
 return colorList;
 }
 """)),
 )
 .set_global_opts(
 xaxis_opts=opts.AxisOpts(
 type_="category",
 grid_index=1,
 axislabel_opts=opts.LabelOpts(is_show=False),
 ),
 legend_opts=opts.LegendOpts(is_show=False),
 ))
 
 
 ov1 = k.overlap(l)
 ov1.render_notebook()
 ov1.render('3.html')
 
 ov = k.overlap(l)
 g = (Grid(init_opts=opts.InitOpts(
 width="100%",
 height="800px",
 animation_opts=opts.AnimationOpts(animation=False),
 )
 )
 .add_js_funcs("var barData={}".format(df[["open", "close"]].values.tolist()))
 .add(ov,
 grid_opts=opts.GridOpts(
 pos_top="2%",
 height="70%",
 ),
 )
 .add(v,
 grid_opts=opts.GridOpts(
 pos_top="76%",
 height="19%",
 ),)
 )
 outph = f'C:\\Users\\xiaoyx\\Desktop\\{date.today():%y%m%d}'
 filename = f"{code}.html"
 outfile = os.path.join(outph,filename)
 if os.path.exists(outph):
 pass
 else:
 os.makedirs(outph)
 return g.render(outfile)
 
 
 
 if __name__ == '__main__':
 kline('000409')
 
 
 |